80 research outputs found

    Definable inapproximability: New challenges for duplicator

    Get PDF
    AbstractWe consider the hardness of approximation of optimization problems from the point of view of definability. For many NP\textrm{NP}-hard optimization problems it is known that, unless P=NP\textrm{P} = \textrm{NP} , no polynomial-time algorithm can give an approximate solution guaranteed to be within a fixed constant factor of the optimum. We show, in several such instances and without any complexity theoretic assumption, that no algorithm that is expressible in fixed-point logic with counting (FPC) can compute an approximate solution. Since important algorithmic techniques for approximation algorithms (such as linear or semidefinite programming) are expressible in FPC, this yields lower bounds on what can be achieved by such methods. The results are established by showing lower bounds on the number of variables required in first-order logic with counting to separate instances with a high optimum from those with a low optimum for fixed-size instances.</jats:p

    On the power of symmetric linear programs

    Get PDF
    We consider families of symmetric linear programs (LPs) that decide a property of graphs (or other relational structures) in the sense that, for each size of graph, there is an LP defining a polyhedral lift that separates the integer points corresponding to graphs with the property from those corresponding to graphs without the property. We show that this is equivalent, with at most polynomial blow-up in size, to families of symmetric Boolean circuits with threshold gates. In particular, when we consider polynomial-size LPs, the model is equivalent to definability in a non-uniform version of fixed-point logic with counting (FPC). Known upper and lower bounds for FPC apply to the non-uniform version. In particular, this implies that the class of graphs with perfect matchings has polynomial-size symmetric LPs while we obtain an exponential lower bound for symmetric LPs for the class of Hamiltonian graphs. We compare and contrast this with previous results (Yannakakis 1991) showing that any symmetric LPs for the matching and TSP polytopes have exponential size. As an application, we establish that for random, uniformly distributed graphs, polynomial-size symmetric LPs are as powerful as general Boolean circuits. We illustrate the effect of this on the well-studied planted-clique problem

    Monotone Proofs of the Pigeon Hole Principle

    Get PDF
    Lecture Notes in Computer Science. Geneva, Switzerland, July 9-15

    On the speed of constraint propagation and the time complexity of arc consistency testing

    Full text link
    Establishing arc consistency on two relational structures is one of the most popular heuristics for the constraint satisfaction problem. We aim at determining the time complexity of arc consistency testing. The input structures GG and HH can be supposed to be connected colored graphs, as the general problem reduces to this particular case. We first observe the upper bound O(e(G)v(H)+v(G)e(H))O(e(G)v(H)+v(G)e(H)), which implies the bound O(e(G)e(H))O(e(G)e(H)) in terms of the number of edges and the bound O((v(G)+v(H))3)O((v(G)+v(H))^3) in terms of the number of vertices. We then show that both bounds are tight up to a constant factor as long as an arc consistency algorithm is based on constraint propagation (like any algorithm currently known). Our argument for the lower bounds is based on examples of slow constraint propagation. We measure the speed of constraint propagation observed on a pair G,HG,H by the size of a proof, in a natural combinatorial proof system, that Spoiler wins the existential 2-pebble game on G,HG,H. The proof size is bounded from below by the game length D(G,H)D(G,H), and a crucial ingredient of our analysis is the existence of G,HG,H with D(G,H)=Ω(v(G)v(H))D(G,H)=\Omega(v(G)v(H)). We find one such example among old benchmark instances for the arc consistency problem and also suggest a new, different construction.Comment: 19 pages, 5 figure

    Limitations of Algebraic Approaches to Graph Isomorphism Testing

    Full text link
    We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Gr\"obner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Gr\"obner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus

    CSP for binary conservative relational structures

    Full text link
    We prove that whenever A is a 3-conservative relational structure with only binary and unary relations then the algebra of polymorphisms of A either has no Taylor operation (i.e. CSP(A) is NP-complete), or generates a congruence meet semidistributive variety (i.e. CSP(A) has bounded width).Comment: 9 pages, 3 figure

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    On the reduction of the CSP dichotomy conjecture to digraphs

    Full text link
    It is well known that the constraint satisfaction problem over general relational structures can be reduced in polynomial time to digraphs. We present a simple variant of such a reduction and use it to show that the algebraic dichotomy conjecture is equivalent to its restriction to digraphs and that the polynomial reduction can be made in logspace. We also show that our reduction preserves the bounded width property, i.e., solvability by local consistency methods. We discuss further algorithmic properties that are preserved and related open problems.Comment: 34 pages. Article is to appear in CP2013. This version includes two appendices with proofs of claims omitted from the main articl

    Sparser Random 3SAT Refutation Algorithms and the Interpolation Problem:Extended Abstract

    Get PDF
    We formalize a combinatorial principle, called the 3XOR principle, due to Feige, Kim and Ofek [12], as a family of unsatisfiable propositional formulas for which refutations of small size in any propo-sitional proof system that possesses the feasible interpolation property imply an efficient deterministic refutation algorithm for random 3SAT with n variables and Ω(n1.4) clauses. Such small size refutations would improve the state of the art (with respect to the clause density) efficient refutation algorithm, which works only for Ω(n1.5) many clauses [13]. We demonstrate polynomial-size refutations of the 3XOR principle in resolution operating with disjunctions of quadratic equations with small integer coefficients, denoted R(quad); this is a weak extension of cutting planes with small coefficients. We show that R(quad) is weakly autom-atizable iff R(lin) is weakly automatizable, where R(lin) is similar to R(quad) but with linear instead of quadratic equations (introduced in [25]). This reduces the problem of refuting random 3CNF with n vari-ables and Ω(n1.4) clauses to the interpolation problem of R(quad) and to the weak automatizability of R(lin)

    Automatizability and Simple Stochastic Games

    Full text link
    The complexity of simple stochastic games (SSGs) has been open since they were dened by Condon in 1992. Despite intensive eort, the complexity of this problem is still unresolved. In this paper, building on the results of [4], we establish a connection between the complexity of SSGs and the complexity of an important problem in proof complexity{the proof search problem for low depth Frege systems. We prove that if depth-3 Frege systems are weakly automatizable, then SSGs are solvable in polynomial-time. Moreover we identify a natural combinatorial principle, which is a version of the well-known Graph Ordering Principle (GOP), that we call the integer-valued GOP (IGOP). This principle states that for any graph G with nonnegative integer weights associated with each node, there exists a locally maximal vertex (a vertex whose weight is at least as large as its neighbors). We prove that if depth-2 Frege plus IGOP is weakly automatizable, then SSG is in P. Supported by NSERC.
    • …
    corecore